TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRIAC

TLP3020,TLP3021,TLP3022,TLP3023

OFFICE MACHINE HOUSEHOLD USE EQUIPMENT TRIAC DRIVER SOLID STATE RELAY

The TOSHIBA TLP3020, TLP3021, TLP3022 and TLP3023 consist of a photo-triac optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP package.

Peak Off-State Voltage : 400 V (Min.)

Trigger LED Current : 30mA (Max.) (TLP3020)

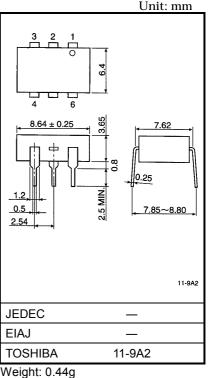
> 15 mA (Max.) (TLP3021) 10 mA (Max.) (TLP3022) 5 mA (Max.) (TLP3023)

On-State Current : 100 mA (Max.)

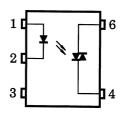
UL Recognized : UL1577, File No. E67349

Isolation Voltage : 5000 Vrms (Min.)

Option (D4) Type


VDE Approved : DIN VDE0884 / 08.87, Certificate No. 68329

Maximum Operating Insulation Voltage: 630 VPK Highest Permissible Over Voltage: 6000 VPK


Note: When a VDE0884 approved type is needed, please designate the "Option (D4)"

7.62mm pich

			standard type	(LF2) type
•	Creepage Distance	:	7.0 mm (Min.)	8.0 mm (Min.)
	Clearance	:	7.0 mm (Min.)	8.0 mm (Min.)
	Insulation Thickness	•	0.5 mm (Min.)	0.5 mm (Min.)

PIN CONFIGURATION (TOP VIEW)

1: ANODE

2: CATHODE

3: N.C.

4: TERMINAL 1

6: TERMINAL 2

•TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

•Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

•The products described in this document are subject to foreign exchange and foreign trade control laws.

•The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

10.16 mm pich

- others.
 •The information contained herein is subject to change without notice.

MAXIMUM RATINGS (Ta=25°C)

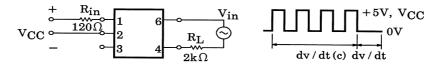
CHARACTERISTIC			SYMBOL	RATING	UNIT
	Forward Current		I _F	50	mA
	Forward Current Derating (Ta ≥ 53°C)		ΔI _F /°C	-0.7	mA/°C
	Peak Forward Current (100μs pulse, 100pps)		I _{FP}	1	Α
LED	Power Dissipation		P_{D}	100	mW
	Power Dissipation Derating (Ta ≥ 25°C)		ΔP _D /°C	-1.0	mW/°C
	Reverse Voltage		V_{R}	5	V
	Junction Temperature		Tj	125	O°
	Off-State Output Terminal Voltage		V_{DRM}	400	V
	On-Stage RMS	Ta=25°C	<u></u>	100	mA
	Current	Ta=70°C	I _{T(RMS)}	50	IIIA
œ	On-State Current Derating (Ta ≥ 25°C)		ΔI _T /°C	-1.1	mA/°C
DETECTOR	Peak On-Stage Current (100 µs pulse, 120 pps)		I _{TP}	2	А
DET	Peak Nonrepetitive Surge Current (P _W =10ms, DC=10%)		I _{TSM}	1.2	Α
	Power Dissipation		P_{D}	300	mW
	Power Dissipation Derating (Ta ≥ 25°C)		ΔP _D /°C	-4.0	mW/°C
	Junction Temperature		Tj	115	O°
Stora	ge Temperature Rai	nge	T _{stg}	− 55 ~ 150	°C
Operating Temperature Range Lead Soldering Temperature (10s)			T _{opr}	− 40 ~ 100	°C
			T _{sol}	260	°C
Total Package Power Dissipation			P _T	330	mW
Total Package Power Dissipation Derating (Ta ≥ 25°C)			ΔP _T /°C	-4.4	mW/°C
Isolat (AC,	ion Voltage 1 min., R.H. ≤ 60%)	Voltage in., R.H. ≤ 60%) (Note 1) BV _S 5000 Vrm		Vrms	

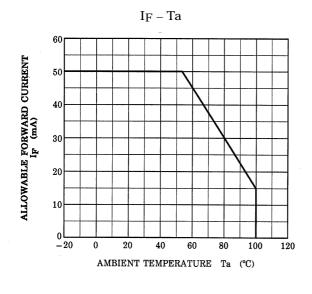
Note 1: Device considered a two terminal device :Pins 1, 2 and 3 shorted together and pins 4 and 6 shorted together.

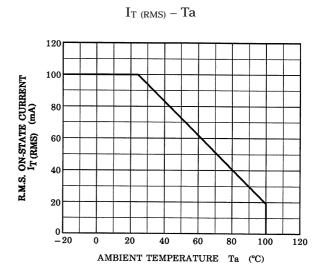
RECOMMENDED OPERATING CONDISTIONS

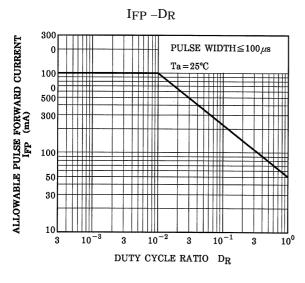
CHARACTERISTICS	SYMBOL	MIN	TYP.	MAX	UNIT
Supply Voltage	V_{AC}	_	_	120	Vac
Forward Current	I _F *	15	20	25	mA
Peak On-Stage Current	I _{TP}	_	_	1	Α
Operating Temperature	T _{opr}	-25	_	85	°C

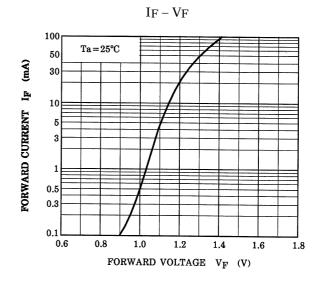
^{*:} In the case of TLP3022

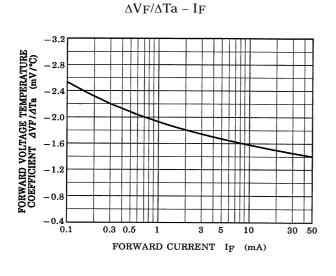

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta=25°C)

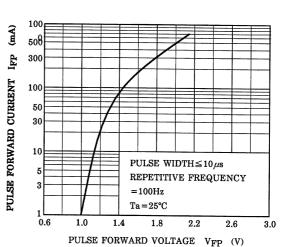

CHARACTERISTIC		SYMBOL TEST CONDITION		MIN	TYP.	MAX	UNIT
	Forward Voltage	V _F	I _F =10mA	1.0	1.15	1.3	V
LED	Reverse Current	I _R	V _R =5V	_	_	10	μА
	Capacitance	C _T	V=0, f=1MHz	_	10	_	pF
	Peak Off-State Current	I _{DRM}	V _{DRM} =400V	_	10	100	nA
<u>«</u>	Peak On-Stage Voltage	V _{TM}	I _{TM} =100mA	_	1.7	3.0	V
STO	Holding Current	I _H	_	_	0.6	_	mA
DETECTOR	Critical Rate of Rise of Off- State Voltage	dv / dt	V _{in} =120Vrms, Ta=85°C (Fig.1)	200	500	_	V/μs
	Critical Rate of Rise of Commutating Voltage	dv / dt(c)	V _{in} =30Vrms, IF=15mA (Fig.1)	_	0.2	_	V/μs

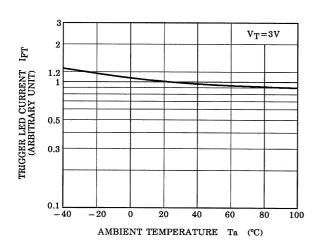

COUPLED ELECTRICAL CHARACTERISTICS (Ta=25°C)

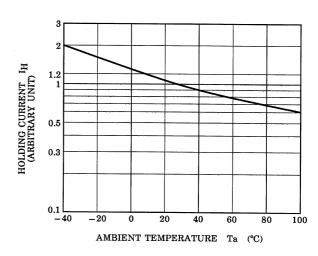

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT	
	TLP3020	IFT	V _T =3V	_	_	30	- mA	
Trigger LED Current	TLP3021			_	_	15		
Trigger LLD Current	TLP3022			_	5	10		
	TLP3023			_	_	5		
Capacitance Input to Output		C _S	V _S =0, f=1MHz	_	0.8	_	pF	
Isolation Resistance		R _S	V _S =500V (R.H. ≤ 60%)	5×10 ¹⁰	10 ¹⁴	_	Ω	
Isolation Voltage			AC, 1 minute		_	_	V _{rms}	
		B _{VS}	AC, 1 second (in oil)	_	10000	_	V.	
			DC, 1 minute (in oil)	_	10000	_	V _{dc}	


Fig. 1 dv/dt TEST CIRCUIT

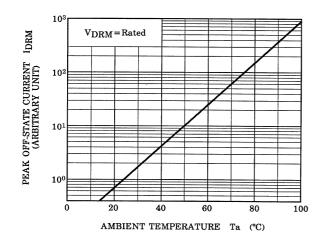


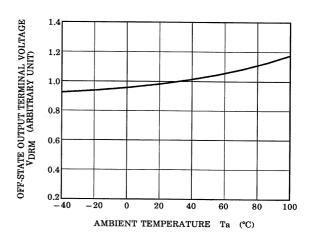


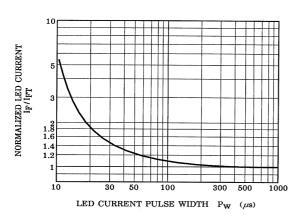




 $I_{FP}-V_{FP}$


NORMALIZED IFT - Ta


NORMALIZED I_H – Ta


NORMALIZED IDRM - Ta

NORMALIZED VDRM - Ta

NORMALIZED LED CURRENT – LED CURRENT PULSE WIDTH

